A Course on Topological Vector Spaces

A Course on Topological Vector Spaces
Author :
Publisher : Springer Nature
Total Pages : 152
Release :
ISBN-10 : 9783030329457
ISBN-13 : 3030329453
Rating : 4/5 (57 Downloads)

Book Synopsis A Course on Topological Vector Spaces by : Jürgen Voigt

Download or read book A Course on Topological Vector Spaces written by Jürgen Voigt and published by Springer Nature. This book was released on 2020-03-06 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the theory of topological vector spaces, with a focus on locally convex spaces. It discusses topologies in dual pairs, culminating in the Mackey-Arens theorem, and also examines the properties of the weak topology on Banach spaces, for instance Banach’s theorem on weak*-closed subspaces on the dual of a Banach space (alias the Krein-Smulian theorem), the Eberlein-Smulian theorem, Krein’s theorem on the closed convex hull of weakly compact sets in a Banach space, and the Dunford-Pettis theorem characterising weak compactness in L1-spaces. Lastly, it addresses topics such as the locally convex final topology, with the application to test functions D(Ω) and the space of distributions, and the Krein-Milman theorem. The book adopts an “economic” approach to interesting topics, and avoids exploring all the arising side topics. Written in a concise mathematical style, it is intended primarily for advanced graduate students with a background in elementary functional analysis, but is also useful as a reference text for established mathematicians.


A Course on Topological Vector Spaces Related Books