Hamilton’s Ricci Flow
Author | : Bennett Chow |
Publisher | : American Mathematical Society, Science Press |
Total Pages | : 648 |
Release | : 2023-07-13 |
ISBN-10 | : 9781470473693 |
ISBN-13 | : 1470473690 |
Rating | : 4/5 (93 Downloads) |
Download or read book Hamilton’s Ricci Flow written by Bennett Chow and published by American Mathematical Society, Science Press. This book was released on 2023-07-13 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ricci flow is a powerful analytic method for studying the geometry and topology of manifolds. This book is an introduction to Ricci flow for graduate students and mathematicians interested in working in the subject. To this end, the first chapter is a review of the relevant basics of Riemannian geometry. For the benefit of the student, the text includes a number of exercises of varying difficulty. The book also provides brief introductions to some general methods of geometric analysis and other geometric flows. Comparisons are made between the Ricci flow and the linear heat equation, mean curvature flow, and other geometric evolution equations whenever possible. Several topics of Hamilton's program are covered, such as short time existence, Harnack inequalities, Ricci solitons, Perelman's no local collapsing theorem, singularity analysis, and ancient solutions. A major direction in Ricci flow, via Hamilton's and Perelman's works, is the use of Ricci flow as an approach to solving the Poincaré conjecture and Thurston's geometrization conjecture.