Knowledge Guided Machine Learning

Knowledge Guided Machine Learning
Author :
Publisher : CRC Press
Total Pages : 442
Release :
ISBN-10 : 9781000598100
ISBN-13 : 1000598101
Rating : 4/5 (00 Downloads)

Book Synopsis Knowledge Guided Machine Learning by : Anuj Karpatne

Download or read book Knowledge Guided Machine Learning written by Anuj Karpatne and published by CRC Press. This book was released on 2022-08-15 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML


Knowledge Guided Machine Learning Related Books

Knowledge Guided Machine Learning
Language: en
Pages: 442
Authors: Anuj Karpatne
Categories: Business & Economics
Type: BOOK - Published: 2022-08-15 - Publisher: CRC Press

DOWNLOAD EBOOK

Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based model
Accelerating Discoveries in Data Science and Artificial Intelligence I
Language: en
Pages: 863
Authors: Frank M. Lin
Categories: Artificial intelligence
Type: BOOK - Published: 2024 - Publisher: Springer Nature

DOWNLOAD EBOOK

Zusammenfassung: The Volume 1 book on Accelerating Discoveries in Data Science and Artificial Intelligence (Proceedings of ICDSAI 2023), that was held on April
Accelerating Discoveries in Data Science and Artificial Intelligence II
Language: en
Pages: 377
Authors: Frank M. Lin
Categories:
Type: BOOK - Published: - Publisher: Springer Nature

DOWNLOAD EBOOK

Artificial Intelligence in Healthcare
Language: en
Pages: 385
Authors: Adam Bohr
Categories: Computers
Type: BOOK - Published: 2020-06-21 - Publisher: Academic Press

DOWNLOAD EBOOK

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of heal
Artificial Intelligence
Language: en
Pages: 160
Authors: Harvard Business Review
Categories: Business & Economics
Type: BOOK - Published: 2019 - Publisher: HBR Insights

DOWNLOAD EBOOK

Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the econ